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1. About the Experiments

A quantitative understanding of the millimeter wavelength attenuative potential
(absorption, scattering) for conductive, fibrous aerosols has been sought for a number of
years in a joint laboratory experimental and theoretical program (Bruce et al. 1990a,
Pedersen et al. 1985, Pedersen et al. 1987, and Waterman and Pedersen 1992). Interest
in theoretical solution for straight fibers with finite conductivity and finite length has
been growing during the same period as a result of the relationship to antenna problems
(Chatterjee et al. 1992, Einarson 1987, and Richmond 1980).

As a concurrent line of research, accurate field measurement systems have been
developed to assure that effects of the turbulent atmosphere present no surprises. This
report deals with a variety of these latter measurements.

Optical efficiencies (effective cross sections for absorption, total scattering or extinction
normalized to particle volume or particle mass) have been measured in situ and/or
calculated for generic graphitic fibers. A few results are for fibers with a relatively
thick, high conductivity coating of thickness greater than the skin depth. Efficiencies
were calculated using measured length and diameter distributions.

For two of the experimental series (series I and II), all measurements (optical and
characterization) were performed within a relatively small region roughly central to the
continuously generated aerosol cloud. Data for 94 GHz and 35 GHz are represented
within these two series. Line integrated data spanning the cloud were obtained for a
third series (series III) as that was the only available mode for attenuation measurements
at the lower two of the three frequencies used (8 GHz, 17 GHz, and 35 GHz). Both
constant air pressure and explosively driven methods of dispersion were used for the
third series. Calculations of efficiencies based on measured length distributions for
explosively dispersed fibers are presented for a fourth experimental series (series IV).

The instruments used in the series I and II measurements for determining the mass
normalized coefficients were so arranged that all would interact with as close as possible
to a common body of aerosol. The optical coefficients were measured with short path
transmissometers having nearly coincident 3 m path lengths. The path length was chosen
to optimize the millimeter wavelength measurement quality (50 percent transmissivity)
for the expected source strength. A third nearly coincident optical beam at a visible
wavelength (0.63 14m) provided a basis for determining the normalizing aerosol volume
factor. Located directly downwind, but central and close to these paths, were several
aerosol characterization measurements of point nature: a passive sampling filter
(dosimeter), a time resolved particle collector that employs moving tape, a nephelometer
sampling a relatively large instantaneous volume for obtaining valid statistics in short
intervals, and a windspeed-matched active sampling system using a sensitive differential
pressure sensor. Figure 1 shows the arrangement. The somewhat redundant but unique
set of measurements and subsequent analysis provide fiber length and diameter
distributions, variations in time, and an independent determination of the aerosol density
for normalization of the millimeter wavelength extinction coefficients.
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The passive sampling filter device used a mesh that was shown in wind tunnel studies not
to form a significant aerodynamic barrier to the impinging fibers unless heavily loaded.
In the latter case, the passive device does form a strong barrier and most of the fibers
will circumvent the sampler. The active sampling device measures the airflow through
the filter and compares it against the ambient windspeed. Isokineticity (wind-matched
airflow) through the filter can therefore be maintained until the system is truly choked.
The particle collector is, in effect, a calibrated barrier; it is calibrated as a function of
windspeed. Congestive effects for this instrument are not significant. The nephelometer,
as designed for these measurements, used straight-through, unobstructed flow with a
detection angle centered about 900 and a detection volume of about 30 cc. Nephelo-
meters were also used to enhance the time resolution of the particle collector and
transmissometer data.

The experiments of Series m were performed with three microwave beams and the
additional HeNe geometrical characterization beam as nearly coincident as possible. The
35 GHz and 0.63 Am crosswind beams were transmitted between towers spaced by
100 m. For the other two wavelengths, 8 GHz and 17 GHz, radar receivers were used
with large mobile dish antennas adjacent to one tower and transmitters on the opposite
tower. The approximate height of the line(s) of sight was 15 ft, the minimum value for
avoidance of multipath and ground clutter. The beams intersected vertically in the
central portion of the path while having as much as several meters displacement
horizontally. Time-displacement corrections were performed later to correlate the
various signals.

DIRECTION OF AIRFLOW

Figure 1. Top view of system for measurement of extinction efficiencies. Three transmis-
someter beams pass between platforms "A" and "B." Each platform includes
a millimeter wavelength transmitter and receiver at different wavelengths in a
closed, nonabsorbing container. Aerosol characterization devices shown are:
(1) passive filter-mesh sampler, (2) active isokinetic sampler with differential
airflow sensor, (3) Particle Collector, and (4) nephelometer.
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Mesh filters and a linear array of nephelometers produced the geometrical
characterization and transverse density profiles for the clouds. The primary purpose of
the nephelometer array was to indicate the cloud location with respect to the intersection
region rather than as a basis for absolute calculations.

The series III experiment was clearly less definitive than the previous two and more
assumptions were made in the analyses. Nevertheless, it was made worthwhile for three
important reasons. It was the only optical experiment to include metallic (high
conductivity) fibers and explosive dissemination. Also, the additional (lower) frequencies
extended the measurements of extinction efficiencies for these fibers into a new (lower)
domain.

2. Results

Time histories of the extinction coefficients for the series I and II experiments, those
obtained from the line-integrated short path transmissometers and the time resolved
aerosol characterization "point" measurements, all show a high degree of correlation
within the response bandwidth (DC to about 1 Hz). This strongly suggests that these
coefficients are all linearly related to the aerosol mass density. The volume or mass
normalized coefficients are thus essentially constant in time for a given experiment, that
is, for a given aerosol composition and size distribution.

Use of the visible laser beam to compute the aerosol line density geometrically (fiber
diameter> > wavelength) yields the most comparable measure for mass normalization of
the microwave extinction coefficients. The time averages of the series I extinction
efficiencies and their test-by-test RMS variations for each of the four aerosol categories
(two frequencies/two diameters) are listed and compared with the theoretical values at
the cut length in table 1. The length distributions were quite narrow, as indicated by
typical distribution variances about deviation of a = 0.2 mm. The quantity of
information for the different trials varied greatly; so the authors have used weighting
factors in forming the averages.

Clumping or binding together of fibers was minimal, and theory applied to measured
distributions of bundles also indicates minimal effects (less than 5 percent) on the
efficiencies. Distributions of multiples closely approximated a single decreasing power
law for all trials; the probability of encountering a bundle of 10 was about 10W.

Radiation for both of the microwave systems was vertically polarized for experimental
series I and 11, so the question arises as to whether the particles were randomly oriented.
A simultaneous independent measurement using vertical and horizontal 0.63 pm laser
beams detected little tendency, on the average, for the fibers to orient in the ambient
turbulence for this experimental series.
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Table 1. Millimeter Wavelength Extinction Efficiencies, E(m2/g), for Individual

Experiments of Series I.

Experiment No. E @ 35 GHz E @ 94 GHz

1 1.46 1.47
2 1.70 1.61
3 1.62 1.64
4 1.66 1.46
5 2.20 1.60
6 2.93 2.73
7 2.38 1.49
8 3.12 2.69
9 2.15 1.93
10 2.94 2.62

Table 2 shows that all but one of the mean efficiencies for series I are in good agreement
with the calculated values although the variation from trial-to-trial can be significant.
There is also agreement that the extinction mass efficiency at 35 GHz is higher than for
94 GHz. Finally, note that there is general agreement on the effect of the particle
diameter; that is, the smaller diameter particles have higher efficiencies.

Table 2. Mean Measured and Theoretical Extinction Mass Efficiencies Compared for
Series I Experiments.

Measurement/Theory [m 2g-1]
Wavelength (cm) 6.5 t~m diameter 3.8 )Am diameter

0.319 1.53 ± 6% / 1.42 2.25 ± 26% / 2.06
0.857 1.61 ± 7% / 2.15 2.64 ± 16% / 2.50

Basically the same measurements were made for the series II experiments except that
both horizontal and vertical polarizations of E field were measured at 35 GHz (and
averaged for this report). Ninety-four GHz was not used. Results are again tabulated
(table 3) by experiment and this time are compared with calculations based on the length
distributions for each experiment. Also included in this table are the efficiencies at cut
lengths. Figure 2 shows sample length distributions.
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Figure 2. Sample length distributions for experimental series H. Distribution is on the
vertical axis and the relative amplitude is on the horizontal axis in all cases. The
span is indicated for roughly 50 percent points on bar graph. Sigma is
considerably less.

Table 3. Measured and Calculated Extinction Efficiencies E(m2g1 ) @ 35 GHz for Individual
Experiments of Series H.

Measured Calculated
Experiment < c > CCL E

1 1.75 2.16 1.92
2 1.49 2.17 2.00
3 2.34 1.76
4 1.80 2.01 1.55
5 2.17 2.01 1.68
6 2.33 2.01 2.02
7 2.09 1.78 1.80
8 1.68 1.78 1.80
9 1.71 1.78 1.76
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The results show that the measured extinction efficiencies for the airborne cloud are close
to cut length ideal. The averaged measured efficiency is 96 percent of that for the cut
length. We also note a 4 percent difference* between the measured and calculated
averages (calculatc.- is lower) while the measured intertrial standard deviation is about
17 percent. T1 standard deviation of the difference between measured and calculated
values is also about 17 percent. Uncertainties are principally in the HeNe measurement
(estimate 5-e8 percent/trial, average) and length distribution (estimate 10-.15 percent on
the calculated values). A differential error analysis indicates that the variation could be
accounted for by the uncertainties.

I.÷ L..~ - -÷ ~ R
A'1_ T f VW 'E0.6 J 6.6 J

- 0.02 + 0.05 + 0.03 + 0.08

= 18%

where p, R, e•, and e. 6 are the aerosol bulk density, radius and the mass
normalized extinction cross sections.

The technique employed for the series III experiments involved a more compromised
geometry (as we discussed earlier) in order to accommodate the equipment available for
the two lower frequencies. The principal consequence of this compromise was a
reduction in the time-correlation of the different signals.

Examples of the reduced correlation can be seen by comparing figures 3a and 3b. Figure
3a shows time correlation for the nearly collinear short path transmissometers of
experimental series I and 11 while figure 3b shows some of the more closely correlated
time histories of the series III experiments. Others had to be rejected for lack of time
correlation. The amount of data lost was not serious and perhaps is a valuable reminder
that data from different total-traverse paths may not be comparable. While every effort
was made to bring all beams into proximity for the series III experiments, this is not
often the case when results from different transmissometers are compared.

Accurate length distributions were difficult to obtain for this series since the fibers would
mat together (particle collector was not used for this series) and lifting samples from the
filter using transparent adhesive material did not necessarily give representative
distributions. Therefore, since good agreement with the theory for other series has been
the rule, only examples of the different materials/cuts were calculated for series III.

*Particle distributions for two experiments appeared to include fibers broken during the
measurement. In such cases, the tape showed split fibers. When these two distributions
(2, 4) are removed, the measured and calculated averages agree to about 1 percent.
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Figure 3a. Extinction coefficients for optical measurements of series I and H experiments.
Typical traces. One trace (0.6 jm) is boosted one order of magnitude.
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The results of table 4 indicate that, when dispersed explosively, the efficiencies of the
graphitic fibers are typically reduced by more than a factor of two. This is in line with
results for other series. The lowest frequency exhibits reduced efficiencies since a larger
proportion of the fibers is shorter than a half wavelength.

Table 4. Extinction Efficiencies for Explosively Dispersed Fibers.

Composition Signal Extinction Efficiencies
G-Graphite Correlation (measured/calculated)
NiG Nickel Quality (m2/g)

Trial Cut Fiber Coated
No. Length Diameter 8 GHz 17 GHz 35 GHz

(in) (" m)

1 1/4 3.6 G Good 0.63/ 1.46/ 1.36
0.93 1.51 1.96

(cut length) 2.37 2.62 2.56

2 1/4 7.9 G Good 0.48/ 1.08/ 0.68/
0.49 1.17 1.06

(cut length) 0.81 2.22 1.90
3 1/4 7.9 G Good 0.54 0.94 0.80
4 1/4 7.9 G Good 0.58 --- 0.84
5 1/4 7.9 G Fair 0.58 -- 0.48

6* 1/2 8.3 G Good 0.64 1.58 1.42
7 1/4 9.2 Ni-G Good 0.08/ 1.12/ 0.48

0.02 0.77 1.29
(cut length) 1.51E-2 0.86 1.00

8 1/4 9.2 Ni-G Good low 0.81 1.90

9 1/2 9.2 Ni-G Good 0.74 1.25 0.99
(cut length) 0.90 1.80 3.77

10 1/2 9.2 Ni-G Good 1.19 0.77 0.89
11 1/2 9.2 Ni-G Good --- 0.85 0.68
12 1/2 9.2 Ni-G Fair 0.80 1.23 0.53

*Constant generation, not explosively dispersed.
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The nickel-coated fibers strongly show the reduced efficiency when the fiber lengths are
on the short side of the prime resonance. Other length-dependent features are smeared
by the breadth of the distribution. None of the available wavelengths provides the prime
resonance at the cut lengths of the nickel-coated fibers.

Because of the known sensitivity of the visible and near-IR detectors to small particles,
it was understood that any residue of the explosive used for dispersal of the fibers would
be quite measurable. This signal would appear only in the normalization of the
microwave extinction coefficients, causing a proportional error (apparent reduction) in
the efficiencies. This effect was investigated by removing all the fibers from several
explosive units and performing the experiment otherwise in the same fashion. Our
concern was affirmed but the magnitude varied from little to tens of percent change in
efficiency. Statistical analysis was not possible, so significant errors may be present in
the measured results of this series. Nevertheless, the presence of the contaminants is not
apparent in the results (note, for example, relationship with calculated values).

The explosive manner of dispersion for the fourth series of experiments produces length
distributions that show no peak at all at the cut length - if they are cut (some are not).
These distributions, as seen in the examples of figure 4, show only a tail at the longer
lengths and peak at lengths having very small cross sections per unit mass.

5 -5

4 4

3 - 3

CZ

i2 C42

0. . . . . . . A

0 05. .1 5 2.25.3.35 .4 .,5.5.55 .. 5 .7.75 0 .05 .15 .2 .25
Length (cm) Length (cm)

5. 5

4 14

-33

0 0 .

0 .05 .1 15 .2 .2S.3 .35 .4 .45.5.55.6.65 .7.75 0 05 .1 A.215. .253 35.4.45 .5.55 .6.65 .71S7
Length (cmn) Length (cm)

Figure 4. Examples of the length distributions for the explosive-only series IV experiments.
T7hese have no peaks at the cut-lengths while those of the series m experiments
did show at least a definable peak at the cut length. Yet the calculated
extinction efficiencies are not very different.
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What happens to the efficiencies in such cases? Table 5 gives calculated values. All
these trials were for graphite. The average extinction efficiency @ 35 GHz is about
40 percent (±25 percent) of that attainable with the ideal cut length. The continuous air
dispersion experiments, by comparison, produce extinction efficiencies that, for graphite,
are those of the cut lengths to within a few (< 5) percent.

Table 5. Calculated Extinction Efficiencies Using Length Distributions, Average Diameters
and an Electrical Conductivity of 7 X 10' mho/m.

•(m29)
Event Diameter E35 9 E9

6-12 6.67 0.82 1.00 2.31
7-12 6.89 0.89 1.12 2.30
7-10 6.67 0.92 1.02 2.31
6-13 6.78 0.41 0.68 2.31
7-17 6.82 1.08 1.18 2.30
8-3 6.91 0.68 0.93 2.30
7-15 6.82 0.96 1.16 2.30
6-15 6.97 0.45 0.78 2.29
8-7 6.95 1.11 1.11 2.29
6-11 6.89 1.02 1.12 2.30
6-10 7.00 1.06 1.04 2.29
8-5 6.64 0.98 1.13 2.32
8-1 6.86 1.04 1.18 2.30
8-2 6.71 0.79 1.08 2.31
7-1 7.04 0.73 1.02 2.29

"<E35> = 0.86 ± 25% m2/9
"<e94> = 1.04 ± 13% m2/9
"<E35 > = 38% of that @ cut length
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3. Results and Conclusions

Several specific observations can be made regarding the general results of these trials,
and at least one quite relevant question is left unanswered.

First, most of these data are for the graphitic fibers and there is good agreement between
the theory and the measurements on the values of the extinction efficiencies.

Agreement between measurement and theory extends, as expected, to a range of
frequencies (8 GHz to 140 GHz (140 GHz not presented here)) for the actual field
measurements. Since graphites exhibit no quantum structure anomalies anywhere in the
millimeter/microwave wavelength bands, parameters of the calculations, for example,
electrical conductivity, electron relaxation rate and mean free path, the accuracy of the
calculations seems secure at frequencies within this range.

As dispersed in continuous fashion, the extinction efficiencies of the particles that appear
beyond the "source" or generation region are very nearly those of the cut length. This
is confirmed by calculations based on measurements of the distributions.

Clearly the explosive dispersion takes a significant toll on the efficiencies of the dispersed
aerosol, that is, roughly a factor of two.

The issue left unsettled here is the proportion of aerosol that is effectively separated and
made airborne for extended distances.

Lastly, nickel, which we have confirmed by laboratory measurements and comparisons
with theory to be much more efficient than graphite when cut at the prime resonance,
does not show its maximum attenuation when cut between frequencies of the illuminating
radiation. Only the "Rayleigh" particles (actually, (kL/2 < 1) really reveal any strong
spectral feature of the high conductivity particles. For the length weighted average
attenuation, the nickel-coated particles are still off resonance and yield about the same
efficiency as the graphitic ones.
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